Submit Manuscript  

Article Details


The Interfacial Effect on H2 Production from Oxidative Steam Reforming of Ethanol Over Rh/Ce1-xLaxO2-δ Nanocatalysts

[ Vol. 16 , Issue. 5 ]

Author(s):

Kang Yang, Yafei Wang*, Yujie Yang, Hongrui Hao and Xue Han*   Pages 837 - 845 ( 9 )

Abstract:


Background: The production of hydrogen from catalytic reforming ethanol has attracted wide attention, which provides a promising way to replace fossil fuels with sustainable energy carriers.

Methods: In this work, the Ce1-xLaxO2-δ solid solution (CL) supported Rh catalysts (nRh/CL, n = 0.5, 1 and 2 wt.%) were prepared by a traditional impregnation method with a variation of Rh loading. The different interface structure of nRh/CL catalysts and their catalytic performance in oxidative steam reforming (OSR) reaction were investigated.

Results: Rh was loaded by the traditional impregnation method, and ethanol conversion and H2 yield declined in the order of 1%Rh/CL > 2%Rh/CL > 0.5%Rh/CL.

Conclusion: The supports of the nRh/CL catalysts were confirmed to be Ce1-xLaxO2-δ solid solution, but only for the 1%Rh/CL catalyst, the Rh species were well-dispersed on the support and formed a Rh2O3//Ce1-xLaxO2-δ interface structure. The super-cell structure of Rh3+-O-RE3/4+ (RE = Ce, La) on the surface of 0.5%Rh/CL catalyst and the formation of interfacial Ce1-x-yLaxRhyO2-δ solid solution for 2%Rh/CL catalyst had effects on the self-activation of the nRh/CL catalysts. The typical lattice expansion of Ce1-xLaxO2-δ solid solution lowered the energy for migration. And the excellent hydrogen and oxygen mobility at the Rh//Ce1-xLaxO2-δ interface for 1%Rh/CL catalyst guaranteed the good catalytic performance for OSR at low temperature.

Keywords:

Hydrogen production, Rh catalysts, Ce-La solid solution, interfacial solid solution, self-activation, ethanol.

Affiliation:

School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Engineering Institute, General Research Institute for Non-Ferrous Metals, Beijing 100088, Engineering Institute, General Research Institute for Non-Ferrous Metals, Beijing 100088, Engineering Institute, General Research Institute for Non-Ferrous Metals, Beijing 100088

Graphical Abstract:



Read Full-Text article