Submit Manuscript  

Article Details


Synthesis of Polyaniline/Zn Bismuthate Nanocomposites and Sensitive Formaldehyde Sensing Performance

[ Vol. 15 , Issue. 5 ]

Author(s):

Lizhai Pei, Fanglv Qiu, Yue Ma, Feifei Lin, Chuangang Fan* and Xianzhang Ling*   Pages 492 - 500 ( 9 )

Abstract:


Background: Formaldehyde belongs to important pollutant and is usually found in liquid environment, such as juices, beer, cleaning products and biological fluid of the human. The electrochemical sensors using glassy carbon electrode (GCE) modified with polyaniline/Zn bismuthate nanocomposites can effectively detect formaldehyde with broad linear range and good reproducibility.

Methods: Polyaniline/Zn bismuthate nanocomposites were prepared by in-situ aniline polymerizing route in aqueous solution. The structure and morphologies of the nanocomposites were analyzed by X-ray diffraction (XRD) and transmission electron microscopy. The electrochemical performance for formaldehyde detection has been investigated by cyclic voltammetry (CV) method using polyaniline/ Zn bismuthate nanocomposites modified GCE.

Results: XRD shows that ZnBi38O58 phase exists in the nanocomposites. Amorphous polyaniline attaches to the surface of the Zn bismuthate nanorods. The 20wt.% polyaniline/Zn bismuthate nanocomposites modified GCE shows an irreversible cyclic voltammetry (CV) peak at –0.06 V. The peak current increases sharply with increased scan rate, formaldehyde concentration and acidity. The electrochemical response dependences including the linear range, detection limit were analyzed. 20wt.% polyaniline/Zn bismuthate nanocomposites modified GCE shows low detection limit of 0.0095 µM and wide linear range of 0.00001-2 mM. The detection limit for formaldehyde decreases from 0.028 µM to 0.0075 µM with the increase in the polyaniline content from 10wt.% to 40wt.%.

Conclusion: The low detection limit and wide linear range make the nanocomposites modified GCE valuable for sensor application. Polyaniline/Zn bismuthate nanocomposites are identified as the prominent electrode materials for sensitive formaldehyde detection.

Keywords:

Polyaniline, Zn bismuthate nanorods, nanocomposites, glassy carbon electrode, formaldehyde, electrochemistry.

Affiliation:

Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education, Key Lab of Materials Science and Processing of Anhui Province, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, School of Civil Engineering, Harbin Institute of Technology, Heilongjiang, Harbin 150090

Graphical Abstract:



Read Full-Text article