Submit Manuscript  

Article Details


Effects of Electrodeposition Time on Ni/rGO Composite Electrode as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Media

[ Vol. 15 , Issue. 2 ]

Author(s):

Lixin Wang, Peipei Zhang, Lei Bai, Lei Cao, Jing Du, Yazhou Wang and Xiujuan Qin*   Pages 178 - 187 ( 10 )

Abstract:


Background: Ni/rGO composite electrode has been fabricated by facile supergravity electrodeposition as a low-cost catalyst for efficient hydrogen evolution in alkaline media. In this paper, the electrodeposition time is the main research variable. When the electrodeposition time is 100 minutes, the Ni/rGO-100 catalyst manifests the highest electrocatalytic activity toward the hydrogen evolution reaction (HER). In 1.0 M NaOH solution, the overpotential at a current density of 100 mA cm-2, Tafel slope and charge transfer resistance of Ni/rGO-100 catalyst is 184 mV, 77 mV dec-1 and 4.173 Ω, respectively. In addition, Ni/rGO-100 catalyst shows a long-term durability at a constant current density of 100 mA cm-2 for 10 h. The outstanding HER electrocatalytic performance of the Ni/rGO-100 is mainly related to the synergetic combination of Ni and rGO, as well as the enlarged exposure of catalytically active sites and improved transport of electrons arising from the good conductivity of graphene.

Method: In a classic experiment, GO was prepared by modified Hummers method. The Ni/rGO composite electrodes were prepared by supergravity electrodeposition, which has been reported in detail in our published paper. Firstly, a ø10 cm × 2 cm Ni foam circle was cleaned sequentially in HCl solution (15%), acetone and DI water for 5 min with ultrasonication to be used as a cathode. And a pure nickel pipe was used as anode. The Ni/rGO composite cathodes were electrodeposited in a blackish green plating bath which contained 350 g L-1 Ni(NH2SO3)2·6H2O, 10g L-1 NiCl2·6H2O, 30 g L-1 NH4Cl , 1.0 g L-1 GO colloidal solution with different electrodeposition time, 10min, 30min, 60min, 80min, 100min, respectively. The pH value of the plating bath is 3.5-3.8. The above five electrodes were respectively denominated as Ni/rGO-10, Ni/rGO-30, Ni/rGO-60, Ni/rGO-80, Ni/rGO-100. All composite electrodes were performed under the strength of the supergravity with G=350 g at a current density of 3 A dm-2 at 318 K. Afterwards the Ni foam coated with Ni/rGO hybrid was taken out of the reaction vessel, followed by washing with deionized water to remove physical adsorption residua, and then dried at 80°C.

Results: In this paper, the electrodeposition time is the main research variable. When the electrodeposition time is 100 minutes, the Ni/rGO-100 catalyst manifests the highest electrocatalytic activity toward the hydrogen evolution reaction (HER). In 1.0 M NaOH solution, the overpotential at a current density of 100 mA cm-2, Tafel slope and charge transfer resistance of Ni/rGO-100 catalyst is 184 mV, 77 mV dec-1 and 4.173 Ω, respectively.

Conclusion: In summary, we have synthesized a class of composite electrodes (Ni/rGO) for HER in alkaline solution by electrodeposition under supergravity field. We studied the effect of electrodeposition time on electrode performance in detail. With the increase of electrodeposition time, the number of active sites is enlarged provided by the electrode. When the electrodeposition time is 100 min, we fabricate the best electrode (Ni/rGO-100). The η100, Tafel slope and charge transfer resistance of Ni/rGO-100 is 184 mV, 77 mV dec-1 and 4.173 Ω, respectively. The introduction of graphene and supergravity field plays a key role in improving the performance of the electrodes. This work is a pivotal part of the development of Ni/rGO as a non-precious HER catalyst for green energy field.

Keywords:

Electrodeposition time, hydrogen evolution reaction, electrocatalytic performance, Ni/rGO, alkaline media, composite electrode.

Affiliation:

Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004

Graphical Abstract:



Read Full-Text article